Hyperpolarization-activated currents in the growth cone and soma of neonatal rat dorsal root ganglion neurons in culture.
نویسندگان
چکیده
Dissociated dorsal root ganglion neuron growth cones and somata from neonatal rats were voltage and current clamped with the use of the perforated-patch whole cell configuration to study the occurrence and properties of slow hyperpolarization-activated currents (Ih) at both regions. Under voltage-clamp conditions Ih, blockable by 2 mM extracellular CsCl, was present in 33% of the growth cones tested. Its steady-state activation as a function of voltage could be fitted with a single Boltzmann function with a midpoint potential of -97 mV. The time course of current activation could be best described by a double-exponential function. The magnitude of the fully activated conductance was 3.5 nS and the reversal potential amounted to -29 mV. At the soma, Ih was found in 80% of the somata tested, which is much higher than occurrence at the growth cone. The steady-state activation curve of Ih at the soma, fitted with a single Boltzmann function, had a midpoint potential of -92 mV, which was more positive than that in the growth cone. The double-exponential activation of the current was faster than in the growth cone. The fully activated conductance of 5.1 nS and the reversal potential of -27 mV were not significantly different from the values obtained at the growth cone. Membrane hyperpolarization by current-clamp pulses elicited depolarizing sags in 30% and 78% of the tested growth cones and somata, respectively, which is in agreement with our voltage-clamp findings. Termination of the hyperpolarizing current pulse evoked a transient membrane depolarization or an action potential at both sites. Application of 2 mM extracellular CsCl hyperpolarized the membrane potential reversibly by approximately 5 mV and blocked the depolarizing sags and action potentials following the current injections at these regions. Thus Ih contributes to the resting membrane potential and modulates the excitability of both the growth cone and the soma. Intracellular perfusion with the second messenger adenosine 3',5'-cyclic monophosphate (cAMP) was only possible at the soma by the use of the conventional whole cell configuration. Addition of 100 microM cAMP to the pipette solution shifted the midpoint potential of the Ih activation curve from -108 to -78 mV. The current activation time course was also accelerated. The reversal potential and the fully activated conductance underlying Ih were not changed by cAMP. These results imply that cAMP primarily affects the gating kinetics of Ih. Our results show for the first time quantitative differences in Ih properties and occurrence at the growth cone and soma membrane. These differences may reflect differences in intracellular cAMP concentration and in the expression of Ih.
منابع مشابه
Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملDirect neurotoxicity of tetracaine on growth cones and neurites of growing neurons in vitro.
BACKGROUND Local anesthetics have direct neurotoxicity on neurons. However, precise morphologic changes induced by the direct application of local anesthetics to neurons have not yet been fully understood. Also, despite the fact that local anesthetics are sometimes applied to the sites where peripheral nerves may be regenerating after injury, the effects of local anesthetics on growing or regen...
متن کاملCapsaicin Blocks the Hyperpolarization-Activated Inward Currents via TRPV1 in the Rat Dorsal Root Ganglion Neurons
Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (I(h)) contribute to the maintenance of the resting membrane potential and excitability of neurons. In the cultured dorsal root ganglion (DRG) neurons, we ...
متن کاملAdrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1997